Antisense Oligonucleotide mediated up-regulation of mRNA: Implications for SLC6A1

Athma A. Pai, PhD
December 5, 2019
Jonathan K. Watts, PhD
Associate Professor, UMMS RTI

Kaitlyn Valla
Graduate Student, UMMS RTI
The Central Dogma of Molecular Biology

Credit: Jon Watts
The *Central Dogma* of Molecular Biology

Most drugs bind to disease associated proteins e.g. small molecules

Credit: Jon Watts
The Central Dogma of Molecular Biology

DNA → RNA-specific Agent? → Protein

Protein product modulated through RNA targeting

Credit: Jon Watts
The **dianophore** principle

Traditional, small molecule drug

Chemical structure

Pharmacophore
Ensemble of molecular features that determine target recognition and modulation

Dianophore*
Ensemble of molecular features that determine PK/PD/ADME

Dianophore—from the Greek “διανομή-dianomi” for distribution or delivery

Credit: Jon Watts

Khvorova & Watts (*Nature Biotechnology*) 2017
The dianophore principle

Traditional, small molecule drug

![Chemical structure of a small molecule drug]

Pharmacophore
Ensemble of molecular features that determine target recognition and modulation

Dianophore
Ensemble of molecular features that determine PK/PD/ADME

Oligonucleotide drug

![Chemistry of the backbone and ligand in an oligonucleotide drug]

Dianophore
Ensemble of molecular features that determine PK/PD/ADME

Pharmacophore
Ensemble of molecular features that determine target recognition and modulation

Dianophore—from the Greek “διανομή-dianomi” for distribution or delivery

Credit: Jon Watts

Khvorova & Watts (Nature Biotechnology) 2017
Oligonucleotide chemistry and ligand drives durable, potent silencing in a given tissue.

Once chemistry is validated, lead compounds for new diseases can be found and validated with a timescale of months rather than years.
Oligonucleotide Therapies (development & approved)*

* as of March 2019
The *Central Dogma* of Molecular Biology

1. DNA
2. RNA-specific Agent
3. Protein

Transcription

Protein product modulated through RNA targeting

Credit: Jon Watts
Targeting specific RNA through base pairing

Anti-RNA agent utilizing:
- Watson-Crick Base Pairing
- G-C or A-U or A-T
- Highly conserved
- High specificity

Complementary or “antisense” oligonucleotide

Credit: Jon Watts
Two mechanisms of action

Silencing

- **ASO**
- Finds its target
- **mRNA**
- RNase H-mediated degradation

Blocking

- **Chemically modified ASO**
- Finds its target
- **mRNA**
- Steric blocking of RNA (splice site, binding site, *et al.*)

Credit: Jon Watts
Correcting mis-splicing with ASOs

SMN2 pre-mRNA

1 2a 2b 3 4 5 6 7 8

SPLICING

Full-length SMN2 mRNA

1 2a 2b 3 4 5 6 7 8

TRANSLATION

Full-length SMN protein

Abnormal MFSD8 Splicing and Translation after SVA Insertion

Exon 5 Exon 6 i6 SVA

Donor G P

Accomptor atagATGAGTAA

Spinraza/nusinersen

milasen
Upregulation by targeting non-productive splicing

- often degraded (NMD, other mechanisms)
- wasted transcriptional output
- NON-PRODUCTIVE isoform

Can we re-direct products of wasted transcription from the healthy allele towards productive mRNA isoforms?

Targeting ASOs to block sites of non-productive splicing

- translated into protein
- PRODUCTIVE isoform

Kole et al. (Nat Rev Drug Discovery) 2012
Non-productive splicing is common...

Pickrell, Pai et al. *PLOS Genetics* 2010
... but hard to find in current RNA profiling datasets

Pickrell, Pai et al. (PLOS Genetics) 2010
Computational prediction of non-productive splicing

maxEnt software: Yeo & Burge (Journal of Comp. Biology) 2004
Experimentally identifying sites of non-productive splicing

RNA-sequencing captures mature, stable mRNA

Instead, capture nascent RNA molecules (before maturation & degradation)

short 4sU labeling periods

10 minutes

20 minutes
Sites of non-productive splicing in nascent RNA

30m 4sU labeling in SH-SY5Y cells

junction reads from nascent RNA-seq data

computational predictions (maxEnt)

annotated splice sites
cryptic splice sites

Schwarzl et al. (Journal of Molecular Biology) 2015
Predicting sites of non-productive splicing in *SLC6A1*

- GABAergic neurons (healthy donor)
- astrocytes (healthy donor)
- GABAergic neurons (iPSCs from SLC6A1 patient)
- GABAergic neurons (CRISPR-corrected SLC6A1)
- SH-SY5Y (neuroblastoma cell line)

1. **4sU labeling (15 minutes)**
2. **targeted sequencing of *SLC6A1***
3. **identification of ubiquitously used cryptic splice sites**
4. **antisense oligonucleotide design and testing**
Acknowledgements

Jon Watts, Kaitlyn Valla & lab
Amber & Mark Freed
Myriam Mirza