Disease modelling and therapeutic testing - Potential implications for SLC6A1 research

Julieth Andrea Sierra Delgado, MD, MSc.
Meyer lab
Center for Gene Therapy
Nationwide Children’s Hospital
Columbus, Ohio, USA

2nd Annual International SLC6A1 Symposium - 12/5/2019
Reasons for *in vitro* modelling on neurological diseases

- Neurological diseases: Difficult to study
- Access to tissue/patients limited: post-mortem
- Complex phenotype. Not always genotype-phenotype correlation

In vitro modelling allows us to understand physiological pathways, cell interactions and get close to the pathophysiology of different diseases
Non-cell autonomous component of neurological diseases

Neuron disease phenotype and progression is influenced by other cell types

- Astrocytes
- Microglia
- Oligodendrocytes
Why are Astrocytes important?

- Neurosupportive
- Vasomodulation
- Part of Blood-Brain barrier.
- Regulation of: Glucose, neurotransmitters, ions.
Amyotrophic Lateral Sclerosis

- Adult onset neurodegenerative disease
- Approx. 20’000 individuals in USA
- Degeneration of Motor Neurons
- Paralysis and ultimately death
- ~ 90% sporadic, 10% familial cases
- Various disease causing genes identified

Vast Majority of cases: cause unknown

How do we study this disease?

https://alsnewstoday.com/
Cell culture model using human post-mortem cells

Astrocytes from human ALS patients are toxic to motor neurons

Haidet-Phillips et al, Nat Biotech 2011 + additional age matched controls
Post mortem astrocytes are a limited source

- Post-mortem samples = limited availability + represent only end-stage of disease
- No gain for the donor
Current reprogramming methods in use

Kim, Curr Opinion in Neurobiol 2012
Advantages of direct conversion compared to classical reprogramming

- Direct conversion is much faster
- No clonal selection – no clonal variation
- Maintenance much less time consuming
- Able to generate several disease relevant cell types (Neurons, Astrocytes, Oligodendrocytes) in parallel from the same source

Kim, Curr Opinion in Neurobiol 2012
Advantages of direct conversion compared to classical reprogramming

- Reprogrammed cells can be used on different assays
- Co-Culture model system
- Metabolic assays
iAstrocytes are similarly toxic to motor neurons compared to primary cells

Meyer et al., PNAS 2014
Astrocytes and Oligodendrocytes derived with this method express cell type specific genes

Microarray RNA sequencing shows different expression patterns between primary fibroblast lines and the astrocytes and oligodendrocytes differentiated from them.
Converted fibroblasts are used to model neurological disease and drug screenings

Goal 1: Can this system be used to screen potential therapeutics?

Goal 2: Can we identify markers that might help subclassify patient groups for potential treatments?
Patient subpopulations react differently to treatments

Identification of responders and non-responders to select optimal treatment option for each patient
Expanding the model system to different diseases

- Currently more than 50 different cell lines from various neurodegenerative and neurological disorders with mutations and different disease courses:
 - Lysosomal storage diseases (Batten disease)
 - Neurodevelopmental diseases (Rett Syndrome)
 - Ion channelopathies (SCN2A)

- Disease controls, sibling controls and age matched healthy controls
Juvenile batten disease (CLN3)

- **CLN3**: Neurodegenerative disorder:
 Dysfunction of lysosomes:
 Accumulation of storage material.

- Clinically:
 - Seizures
 - Progressive deterioration of cognition (dementia)
 - Motor function impairment
 - Rapid vision loss
 - Affects other systems (CV).

https://bdsra.org/family-profiles/
CLN3 patient Astrocytes are toxic to neurons

Neuronal Progenitors (NPC) → iAstrocytes differentiation → seed iAstrocytes and GFP+ motor neuron → Quantify # of motor neurons

% of Motor Neuron Survival

- Healthy
- CLN3

iAstrocyte Cell line

CLN3

Healthy

CLN3
Rett Syndrome

• X-linked neurodevelopmental Autism Spectrum Disorder (ASD)

• Clinically:
 o Loss of motor function
 o Loss of speech
 o Stereotypic hand gestures.
 o Seizures

Cellular Phenotype: global compaction of neurons with shortened/fewer neurites
Astrocytes from Rett patients show various severity towards motor neuron morphology and survival.
SCN2A mutations

- SCN2A: Sodium channel → Helps propagate the electrical signals that neurons use to communicate

- Primarily expressed in excitatory neurons: Also in astrocytes.

- Neurodevelopmental disorders:
 - Epilepsy
 - Nonsyndromic intellectual disability
 - Autism spectrum disorders.

https://www.scn2a.org/personal.html
SCN2A Astrocyte toxicity

NOT all SCN2A astrocytes are toxic to motor neurons.
SCN2A patient astrocytes show alterations in mitochondrial function that can be reversed by compound treatment.

Pharmacological treatment restores mitochondrial activity of SCN2A astrocytes.
Glia contributes to the pathophysiology of epilepsy

GAT1 is expressed by presynaptic neurons and Astrocytes

Take home message

• Direct conversion is a promising tool to generate cell types of the CNS

• These cells can be used to study disease mechanisms, analyze commonalities and differences between individual patient subpopulations in different disease mechanisms.

• Useful tool to test potential new targets on a broad variety of backgrounds

• Could be a valuable tool to study SLC6A1
Acknowledgements

Kathrin Meyer Laboratory
Shibi Likhite Ph.D
Cassandra Dennys-Rivers Ph.D
Shrestha Sinha Ray Ph.D
Yacidzohara Rodriguez Ph.D
Krizelle Alcantara M.Sc
Amy Huffenberger BS
Annalisa Hartlaub, BS
Rochelle Rodrigo BS
XiaoJean Zhang BS
Samantha Powers M.Sc
Maura Schwartz BS
Ricardo Pineda BS
Florence Roussel M.Sc
Megan Baird BS, MBA
Leah Schmelzer Stefanik BS
Joseph Caporale BA

Laura Ferraiolo PhD.
University of Sheffield
Support