SLC6A1 GENE

- Encodes instructions for GABA transporter 1 (GAT1)
- Removes GABA from synaptic cleft
 - Major inhibitory neurotransmitter in the brain

Credit: studyblue.com
SLC6A1 DEFICIENCY DISORDER

• First implicated in neurological disease by Carvill et al. 2015
 ▪ 6 individuals with Epilepsy with Myoclonic-Atonic Seizures (MAE; Doose syndrome) with pathogenic SLC6A1 variants
 ▪ 4% of individuals with EMAS explained by SLC6A1

Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

Gemma L. Carvill,1 Jacinta M. McMahon,2 Amy Schneider,2 Matthew Zemel,1 Candace T. Myers,1 Julia Saykally,1 John Nguyen,1 Angela Robbiano,3 Federico Zara,3 Nicola Specchio,4 Oriano Mecarelli,5 Robert L. Smith,6 Richard J. LeVenter,7,8,9 Rikke S. Møller,10,11 Marina Nikanorova,10 Petia Dimova,12 Albena Jordanova,13,14,15 Steven Petrou,16 EuroEPINOMICS Rare Epilepsy Syndrome Myoclonic-Astatic Epilepsy & Dravet working group, Ingo Helbig,17,18 Pasquale Striano,19 Sarah Weckhuysen,13,14,20 Samuel F. Berkovic,2 Ingrid E. Scheffer,2,7,16,21,* and Heather C. Mefford1,21,*

The American Journal of Human Genetics 96, 808–815, May 7, 2015
SLC6A1 DEFICIENCY DISORDER

• Follow up study by Johannesen et al. 2018
SLC6A1 DEFICIENCY DISORDER

• As of December 2019:
 ▪ >50 individuals published in the literature
 ▪ 70 unique SLC6A1 variants reported in HGMD
 ▪ 60 (likely) pathogenic SLC6A1 variants in ClinVar

 ▪ Phenotypic spectrum has expanded beyond Epilepsy with Myoclonic-Atonic Seizures (MAE/Doose syndrome)

 ▪ What does SLC6A1 Deficiency Disorder look like now?
PHENOTYPIC FEATURES: EPILEPSY

- Epilepsy is present in 81% of individuals
 - Median age of onset 24 months (range 5 months – 7 years)
 - 65% of individuals become seizure free

![Pie chart showing percentage of different types of epilepsy](image-url)
PHENOTYPIC FEATURES: EPILEPSY

• Generalized seizure types predominate

Percentage of pts w/seizure type

Seizure types

Typical Absence 50.0%
Atonic 44.1%
Atypical absence 29.4%
Myoclonic 20.6%
Myoclonic-atonic 20.6%
GTCS 14.7%
Eyelid myoclonia 8.8%
Focal-onset 5.9%
Tonic 2.9%
PHENOTYPIC FEATURES: DEVELOPMENT

• Developmental delays in 91% of individuals
• No correlation between seizure control and developmental outcome

3% Age Appropriate
9% Specific Learning Disability
35% Mild ID
6% Moderate ID
47% Severe ID
OTHER NEUROLOGICAL FEATURES

- Aggression: 11.8%
- Hypotonia: 8.8%
- Ataxia/Tremor: 29.4%
- ADHD: 17.6%
- Autism/Autistic features: 23.5%
SLC6A1 GENETIC SPECTRUM

• 60 (likely) pathogenic variants reported in ClinVar

• 70 variants reported in HGMD

• Most commonly reported variant c.863C>T; p.(Ala288Val)
SLC6A1 GENETIC SPECTRUM

Variant Type
- Missense: 57%
- PTV: 30%
- Splice: 10%
- In-Frame Deletion: 3%

Inheritance of SLC6A1 Variant
- de novo: 75%
- Inherited (affected parent): 16%
- Inherited (unaffected mosaic parent): 9%
TREATMENT OF SLC6A1 DEFICIENCY DISORDER

• 65% of individuals become seizure free
 ▪ Developmental concerns unrelated to seizure control

• Sodium valproate may be effective
 ▪ May not be specific to SLC6A1
 ▪ Standard treatment for Epilepsy with Myoclonic-Atonic Seizures

• Ketogenic diet?
 ▪ One published report (Palmer et al. 2016 Pediatr Neurol)
HOW COMMON IS SLC6A1 DEFICIENCY DISORDER?

• ~2% of all epilepsies in unselected cohort (Mattison et al. 2018 Epilepsia)

• 4% of all Epilepsy with Myoclonic-Atonic Seizures (Carvill et al. 2015 AJHG)

• 1.5% of adults with epilepsy and ID (Borlot et al. 2019 Epilepsia)

• ~1% of children with epilepsy onset <36 months (Symonds et al. 2019 Brain)
 - Prospective, population-based study
 - 5th most common genetic diagnosis
 - 8 children with EMAS (1 with SLC6A1)
GENOTYPE-PHENOTYPE CORRELATIONS?

• Not explored in the published literature

• Based on available data, no correlation between genotype and phenotype
 ▪ Systematic studies of genotype-phenotype correlations needed
SUMMARY

• Childhood-onset generalized epilepsy in 80%
 ▪ Median onset 24 months
 ▪ Most common seizure types: absence (typical and atypical), atonic
 ▪ >60% Epilepsy with Myoclonic-Atonic Seizures (MAE, Doose syndrome)
 ▪ Seizures can usually be well-controlled (VPA, Ketogenic Diet)

• Developmental delay in >90%
 ▪ Often apparent before seizure onset
 ▪ Most often mild to moderate developmental impairment

• Ataxia and coordination difficulties in 30%

• Autism spectrum disorders in 25%

• No clear genotype-phenotype correlations
CHOP EPILEPSY NEUROGENETICS INITIATIVE TEAM

Back Row
Anne-Ashley Field, MS, OTR/L
Ingo Helbig, MD
Xilma Ortiz-Gonzalez, MD, PhD
Holly Dubbs, MS, LCGC
Ethan Goldberg, MD, PhD

Front Row
Helen Milligan, MPT
Eric Marsh, MD, PhD
Katie Helbig, MS, LCGC

Contact: helbigk@email.chop.edu